Question

The chord joining the points where x = p and x = q on the curve ax2 + bx + c is parallel to the tangent at the point on the curve whose abscissa is 

Solution

Correct option is

  

   

Slope of chord 

                

  

Slope of tangent at 

                 

SIMILAR QUESTIONS

Q1

If the function f (x) = x3 – 9x2 + 24x + c has three real and distinct roots αβ and γ then the value of [α] + [β] + [γ] is,:

Q2

If at each point of the curve y = x3 – ax2 + x + 1 the tangents is inclined at an acute angle with the positive direction of the x-axis, a lies in the interval.

Q3

Two variable curves C1 : y2 = 4a (x – b1) and C2 : x2 = 4a (y – b2) where ‘a’ is a given positive real no. and b1 and b2 are variable such that C1 and C2 are tangents to each other at point of contact then locus of point of contact is:

Q4

f : R âŸ¶ R be a differentiable function  x Ïµ R. If tangent drawn to the curve at any point x Ïµ (ab) always lie below the curve then

Q5

A lamp of negliligible height is placed on the ground ‘l1’ m away from a wall. A man ‘l2’ m tall is walking at a speed of  m/sec from the lamp to the nearest point on the well. When he is midway between the lamp and the wall, the rate of change in the length of his shadow on the wall is

 

Q6

Consider the parabola y2 = 4xA = (4, –4) and B = (9, 6) be two fixed points on the parabola. Let ‘C’ be moving point on the parabola between A and B such that the area of triangle ABC is maximum, then coordinate of ‘C’ is

Q7

If the rate of change of volume of a sphere is the same as rate of change of its radius, then radius, is equal to

Q8

A spherical balloon is pumped at the constant rate of 3 m3/min. The rate of increase of its surface area as certain instant is found to be 5 m2/min. At this instant it’s radius is equal to

Q9

The third derivative of a function f’’(x) vanishes for all x. If f (0) = 1, f’ (1) = 2 and f’’ = –1, then f (x) is equal to 

Q10

If the tangent at (1, 1) on y2 = x (2 – x)2 meets the curve again at P, then is