Question

Solution

Correct option is

f’’ is not continuous at x = 1

 

We have so that f is a continuous function. Also, 

           

   

                        

Similarly, f’(1–) = 1. Hence  

        

So f’ is a continuous function. Also,  

        

  

                            

Similarly, f’’(1–) = 1. Hence f’’ is not defined at x = 1. So it is not continuous there.

SIMILAR QUESTIONS

Q1

Suppose that f is a differentiable function with the property that

f(x + y) = f(x) + f(y) + xy and 

Q2

  

 

Q5

up to n terms, then y’’(0) is equal to

Q7

Let f and g be differentiable function satisfying g’(a) = 2, g(a) = b and f o g = I (identity function). Then f’(b) is equal to

Q8

,  

 

Q9

Then A is equal to

Q10

           

The values of a and b such that f and f’ are continuous are