Question

 

 

Solution

Correct option is

π/4 – α

   

and tan (α + 2β

                

Since 0 < β < π/2 and tan 2β = 3/4 > 0, we get 0 < 2β < π/2. Also,

0 < α < π/2. Hence, 0 < α + 2β < π and tan (α + 2β) = 1, so that

α + 2β = π/4 ⇒ 2β = π/4 – α.

SIMILAR QUESTIONS

Q1

  is equal to

Q2

An angle α is divided into two parts so that the ratio of the tangents of these parts is λ. If the difference between these parts is x then sinx/sinα is equal to

Q3

 

 or equal to

Q4

Given θ Ïµ (0,π/4) and t1 = (tan θ)tanθ t2 = (tan θ)cotθt3 = (cot θ)tanθand t4 = (cot θ)cotθ then

Q5

If x = sin αy = sin βz = sin (α + β) then cos (α + β) =

Q6

The radius of the circle

 

Q7

If tan x + tan (x + π/3) + tan (x + 2π/3) = 3, then

Q8

The equation cos 2x + a sin x = 2a – 7 possesses a solution if

Q9

sin 470 + sin 610 – sin 110 – sin 250 is equal to

Q10

If 3π/4 < α < π, then  is equal to