A Line Bisecting The Ordinate PN of A Point P(at2, 2at), t > 0, On The Parabola y2 = 4ax is Drawn Parallel To The Axis To Meet The Curve At Q. If NQ meets The Tangent At The Vertex At The Point T, Then The Coordinates Of T are.

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.



A line bisecting the ordinate PN of a point P(at2, 2at), t > 0, on the parabola y2 = 4ax is drawn parallel to the axis to meet the curve at Q. If NQ meets the tangent at the vertex at the point T, then the coordinates of T are.


Correct option is

Equation of the line parallel to the axis and bisecting the ordinate PN of the point P(at2, 2at) is y = at which meet the parabola

y2 = 4ax at the point .

Coordinates of N are (at2, 0).

Equation of QN is 

Which meets the tangent at the vertex, = 0, at the point





A point P moves such that the difference between its distance from the origin and from the axis of x is always a constant c. the locus of P is a


Shortest distance of the point (0, c) from the parabola y = x2where  is


The length of the intercept on the normal at the point (at2, 2at) of the parabola y2 = 4ax made by the circle which is described on the focal distance of the given point as diameter is 


If P, Q, R are three points on a parabola y2 = 4ax whose ordinates are in geometrical progression, then the tangents at and R meet on


If Land L2 are the length of the segments of any focal chord of the parabola y2 = x, then  is equal to


The tangents at three points A, B, C on the parabola y2 = 4x, taken in pairs intersect at the points Pand R. If  be the areas of the triangles ABC and PQR respectively, then 


The locus of the mid-point of the line segment joining the focus to a moving point on the parabola y2 = 4ax is another parabola with directrix