If An Ellipse Slides Between Two Perpendicular Straight Line, Then The Locus Of Its Center Is   

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

If an ellipse slides between two perpendicular straight line, then the locus of its center is   

Solution

Correct option is

A circle

Let 2a, 2b be the length of the major in minor axes respectively of the ellipse sides between two perpendicular lines, the point of intersection P of these lines being the point of intersection of the perpendicular tangent line on the Director circle of the ellipse. This mean that the center C of the ellipse is always at a constant distance  from P. Hence the locus of C is a circle.

                                                             

Testing

SIMILAR QUESTIONS

Q1

Consider the two curves C1 : y2 = 4x ; C2 : x2 + y2 – 6x + 1, then 

Q2

If F1 = (3, 0), F2 = (–3, 0) and P is any point on the curve 16x2 +25y2 = 400, then PF1 + PF2 equal

Q3

The locus of the points of intersection of the tangents at the extremities of the chords of the ellipse x2 + 2y2 = 6 which touch the ellipse x2 + 4y2 = 4 is

Q4

The normal at an end of a latus rectum of the ellipse  passes through an end of the minor axis if

Q5

If the tangent at a point on the ellipse  meets the auxillary circle in two points, the chords joining them subtends a right angle at the center; then the eccentricity of the ellipse is given by

Q6

The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse. x2 + 9y2 = 9, meets the auxillary circle at the point M, then the area of the triangle with vertices at A, M and the origin is

Q7

The normal at a point P on the ellipse x2 + 4y2 = 16 meets the x-axis at Q, then locus of M intersects the latus rectums of the given ellipse at the points.

Q8

Let a and b be non-zero real numbers. Then the equation (ax2 + by2 + c)(x2 – 5xy + 6y2) = 0 represents

Q9

The pints of intersection of the two ellipse x2 + 2y2 – 6x – 12y + 23 = 0 and 4x2 + 2y2 – 20x – 12y + 35 = 0.

Q10

The tangent at any point P of the hyperbola  makes an intercept of length p between the point of contact and the transverse axis of the hyperbola, p1p2 are the lengths of the perpendiculars drawn from the foci on the normal at P, then