Question

Find whether (x) = x3 forms a mapping or not?

Solution

Correct option is

y = (x) forms a mapping

(x) = x∀ x Ïµ R.

Here all the straight lines drawn parallel to y-axis cut y = x3 only at one point. Thus, y = (x) forms a mapping.

                                                                     

SIMILAR QUESTIONS

Q1

The period of   is

Q2

If (x) and g(x) be periodic and non-periodic function respectively, then f(g(x)) is

 

Q3

Let (x) and g(x) be bijective function where :{a, b, c, d}{1, 2, 3, 4}and g:{3, 4, 5, 6}{w, x, y, z) respectively. The number of elements in the range set of g(f (x)) is

Q4

The polynomial p(x) is such that for any polynomial q(x) we have p(q(x) = q(p(x). Then p(x) is

Q5

If denotes greatest integer function, then

Q6

Infinite set, then period of the function cannot be

Q7

If a polynomial of degree n satisfies 

then (x) is

Q8

 

then

Q9

In the given figure find the domain, co-domain and range.

Q10

Find whether  forms a mapping or not?Find whether  forms a mapping or not?