Question

Solution

Correct option is

1 = 1

We have,

LHL of f (x) at x =1

          

          

RHL of f (x) at =1

          

          

Thus RHL = LHL = 1. So,  exists and is equal to 1.

SIMILAR QUESTIONS

Q1

The value of a for which  tends to a finite limit as  is

Q2

Let 

where g is a continuous function. Then  exists if

Q3

The value of  is

Q4

Let Then the value of f (0) so that the function fis continuous is

Q8

 is continuous at x = 0, then

Q9

Evaluate the right hand limit and left hand limit of the function