﻿ Total number of critical points of f (x) = maximum (sin x, cos x) ∀ x Ïµ (–2π, 2π) equal to      : Kaysons Education

# Total Number Of Critical Points Of f (x) = Maximum (sin x, Cos x) ∀ x Ïµ (–2π, 2π) Equal To

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

4

So the critical points lie

When

So, 4 critical points.

#### SIMILAR QUESTIONS

Q1

Find the point on the curve y = x2 which is closest to the point A(0, a).

Q2

Find the shortest distance between the line y – x = 1 and the curve x = y2.

Q3

Find the vertical angle of right circular some of minimum curved surface that circumscribes in a given sphere.

Q4

AB > 0, then minimum value of sec A + sec B is equal to

Q6

(x) = x2 – 4 | | and

Then (x) has

Q7

If xy = 10, then minimum value of 12x2 + 13y2 is equal to

Q8

The function f (x) = x (x2 – 4)n (x2 – x + 1), n Ïµ N assumes a local minima at x = 2, then

Q10