﻿ The equation  represents an ellipse, if   : Kaysons Education

The Equation  represents An Ellipse, If

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Question

Solution

Correct option is

a < 4

The given equation will represent an ellipse, if

10 – a > 0

and,

4 – a > 0

.

SIMILAR QUESTIONS

Q1

, be the end points of the latusrectum of the ellipse x2 + 4y2 = 4. The equations of parabolas with latusrectum PQ are

Q2

The locus of the point of intersection of perpendicular tangents to.

Q3

S(3, 4) and S’(9, 12) are two foci of an ellipse. If the foot of the perpendicular from S on a tangent to the ellipse has the coordinates (1, –4), then the eccentricity of the ellipse is

Q4

The tangent at a point P(θ) to the ellipse  cuts the auxiliary circle at points Q and R. If QR subtends a right angle at the centre C of the ellipse, then the eccentricity of the ellipse is

Q5

Let d1 and d2 be the lengths of the perpendiculars drawn from fociS and S’ of the ellipse  to the tangent at any point P on the ellipse. Then, SP : SP’ =

Q6

The eccentricity of an ellipse with centre at the origin and axes along the coordinate axes, is 1/2. If one of the directrices is x = 4, then the equation of the ellipse is

Q7

If the tangents are drawn to the ellipse x2 + 2y2 = 2, then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is

Q8

If A bar of given length moves with its extremities on two fixed straight lines at right angles, then the locus of any point on the bar describes a/an

Q9

The normal at a point P on the ellipse x2 + 4y2 = 16 meets the x-axis at Q. If M is the mid-point of the line segment PQ then the locus of M intersects the latusrectums of the given ellipse at the points

Q10

The curve with parametric equations