Question

For the equation 3x2 + px + 3 = 0, p > 0, if one of the roots is square of the other, then p is equal to

Solution

Correct option is

3

 

      

Now we know that ω + ω2 = – 1, ω3 = 1    

Comparing, p = 3.

       

SIMILAR QUESTIONS

Q1

   

Q2

If the roots of the equation x2 + px – q = 0 are tan 300 and tan 150, then the value of 2 + q – p is

Q3

If α, β, γ are the roots of the equation x3 + ax + b = 0, then

 

Q4

Let α, β be the roots of x2 – x + p = 0 and γ, δ be the roots of x2 – 4x + = 0. If α, β, γ, δ are in G.P., then the integral values of p and qrespectively, are

Q5

 

Let P, Q, R be defined as

       P = a2b + ab2 – a2c – ac2,

       Q = b2c + bc2 – a2b – ac2

       R = a2c + c2a – c2b – cb2

Where abc are all + ive and the equation Px2 + Qx + R = 0 has equal roots then abc are in

Q6

Let α and β are the roots of equation x2 + x + 1 = 0. The equation whose roots are α19, β7 is

Q7

If x2 + x + 1 is a factor ax3 + bx2 + cx + d, then the real root of ax3 + bx2cx + d = 0 is

Q8

If one root of the equation (a2 – 5a + 3)x2 + (3a – 1)x + 2 = 0 be double the other, then the value of α is:

Q9

If the roots of the equation x2 – 2ax + a2 + a – 3 = 0 are real and less than 3, then

Q10

If b > a, then the equation (x – a) (x – b) – 1 = 0, has