Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

The number of points in (1, 3), where is not differentiable is:

Q2

 

Let f and g be differentiable function satisfying g’ (a) = 2, g (a) = b andfog = I (identity function) 

Then, f ’(b) is equal to:

Q3

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q4

 

Let f be a real function satisfying 

          f (x + z) = f (xf (yf (z

for all real xyz . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2).

Q5

Let h(x) = min.{xx2} for every real number of x. Then:

Q6

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q7

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then: