Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

If P is (1, 2) and the line mirror is 2x – y + 4 = 0, find the coordinates of its image (i.e., Q).

Q2

Find the values of λ for which the point (2 – λ, 1 + 2λ) lies on the non-origin side of the line 4x – y – 2 = 0. 

Q3

Find the incentre of ΔABC if A is (4, –2), B is (–2, 4) and C is (5, 5).

Q4

Find the coordinates of the orthcentre of the triangle whose vertices are (0, 0), (2, –1) and (–1, 3).

Q5

Find straight lines represented by 6x2 + 13xy + 6y2 + 8x + 7y + 2 = 0 and also find the point of intersection.  

Q6

If abc are all distinct, then the equations (b – c)x + (c – a)y + a – b = 0 and (b3 – c3)x + (c3 – a3)y + a3 – b3 = 0 represent the same line if

Q7

If the pair of lines x2 – 2pxy – y2 = 0 and x2 – 2qxy – y2 = 0 are such that each pair bisects the angle between the other pair, then pq equals  

Q8

Angles made with x-axis by the two lines through the point  (1, 2) and cutting the line x + y = 4 at a distance  from the point (1, 2) are

Q9

If the algebraic sum of the perpendicular distances of a variable line from the points (0, 2), (2, 0) and (1, 1) is zero, then the line always passes through the point

Q10

Find the area of triangle ABC with vertices A (aa2), B (bb2), C (cc2).