﻿ The circle x2 + y2 – 4x – 8y + 16 = 0 rolls up the tangent to it at  by 2 units, assuming the x-axis as horizontal, find the equation of the circle in the new position.   : Kaysons Education

# The Circle x2 + y2 – 4x – 8y + 16 = 0 Rolls Up The Tangent To It At  by 2 Units, Assuming The x-axis As Horizontal, Find The Equation Of The Circle In The New Position.

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

Given circle is

x2 + y2 – 4x – 8y + 16 = 0                …(1)

Let

Equation of tangent to the circle (1) at P  is

Let A and B be the centres of the circles in old and new positions, then

(âˆµ AB makes an angle 60o with x-axis)

∴ Equation of the required circle is

#### SIMILAR QUESTIONS

Q1

Find the equation of the circle whose radius is 5 and which touches the circle

x2 + y2 – 2x – 4y – 20 = 0 at the point (5, 5).

Q2

Find the locus of the mid point of the chord of the circle x2 + y2 = a2which subtend a right angle at the point (pq).

Q3

Let a circle be given by

2x (x – a) + y(2y – b) = 0            (a ≠ 0, b ≠ 0)

Find the condition on a and b if two chords, each bisected by the x-axis, can be drawn to the circle from (ab/2).

Q4

The centre of the circle S = 0 lie on the line 2x – 2y + 9 = 0 and S = 0 cuts orthogonally the circle x2 + y2 = 4. Show that circle S = 0 passes through two fixed points and find their co-ordinates.

Q5

be a given circle. Find the locus of the foot of perpendicular drawn from origin upon any chord of Swhich subtends a right angle at the origin.

Q6

be a given circle. Find the locus of the foot of perpendicular drawn from origin upon any chord of Swhich subtends a right angle at the origin.

Q7

P is a variable on the line y = 4. Tangents are drawn to the circle x2 + y2= 4 from P to touch it at A and B. The perpendicular PAQB is completed. Find the equation of the locus of Q.

Q8

Find the condition on abc such that two chords of the circle

x2 + y2 – 2ax – 2by + a2 + b2 – c2 = 0

passing through the point (ab + c) are bisected by the line y = x.

Q9

Find the limiting points of the circles

(x2 + y2 + 2gx + c) + λ(x2 + y2 + 2fy + d) = 0

Q10

Find the equation of the circle of minimum radius which contains the three circles

x2 – y2 – 4y – 5 = 0

x2 + y2 + 12x + 4y + 31 = 0

and         x2 + y2 + 6x + 12y + 36 = 0