Question

The solution set of  in the interval 

Solution

Correct option is

 

We have

       

But,  which is not possible. From   

. Thus the solution set in the given interval is .

SIMILAR QUESTIONS

Q1

The number of values of x in the interval  satisfying the equation  is

Q2

The number of solutions of the equation 

Q3

 

If n be the number of solutions of the equation

         , then n =

Q4

 

The values of x between 0 and  which satisfy the equation

      

are in A.P. The common difference of the A.P.

Q5

 

The number of pairs (xy) satisfying the equations

    

Q6

 

Q7

 

The smallest +ive x such that 

     

Q8

 

The general solution of the trigonometrical equation

     is given by

Q9

 

The general solution of equation   

       

Q10

If , then the values of  form a series in