Question

Solution

Correct option is  is maximum or minimum according as,       Using number line rule,

Which give g’(x) changes sing from –ve to +ve at x = –3, 1

∴                       local minimum at x = –3, 1

And local maximum at x = 0 [as changes from +ve to –ve]

⇒                        g(x) is maximum at x = 0

i.e.,                      gmaximum(0) = 60

and for g(x) to be minimum,  Substituting these values in (i) we get,    SIMILAR QUESTIONS

Q1

Using calculus, find the order relation between x and tan-1x when Q2

The set of all values of ‘b’ for which the function (x) = (b2 – 3b + 2) (cos2x – sin2x) + (b – 1) x + sin 2 does not possesses stationary points is:

Q3

Find the local maximum and local minimum of (x) = x3 + 3x in [–2, 4].

Q4

The function has a local maximum at x =

Q5

Find the set of critical points of the function Q6

Let (x) = sin x – x on [0, π/2], find local maximum and local minimum.

Q7 Then find the value of ‘a’ for which (x) has local minimum at x = 2.

Q8 Discuss maxima and minima.

Q9

A cubic (x) vanishes at x = –2 and has relative maximum/minimum x = –1 and  Find the cubic (x).

Q10

Use the function (x) = x1/xx > 0 to determine the bigger of the two numbers.