Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

Let h(x) = min.{xx2} for every real number of x. Then:

Q2

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q3

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q4

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Q5

 

        

Determine the value of ‘a’ if possible, so that the function is continuous at x = 0.

Q6

 for all real x and y. If f ’ (0) exists and equals to –1and f (0) = 1, find f ’(x).

Q7

Now if it is given that there exists a positive real δ, such that f (h) = h for 0 < h < δ then find f’(x) and hence f (x).