Question

The pole of the line lx + mx + n = 0 with respect to the parabola y2 = 4ax is

Solution

Correct option is

Polar of (x1y1) w.r.t. parabola y2 = 4a is

     yy1 = 2a(x + x1)

 2ax – yy1 + 2ax1 = 0

Compare this with lx + mx + n = 0   we get

       

     

SIMILAR QUESTIONS

Q1

The length of the latus rectum of the parabola 9x2 – 6x + 36y + 19 = 0 is

Q2

The equation of a circle passing through the vertex the extremities of the latus rectum of the parabola y2 = 8x  is

Q3

If the parabola y2 = 4ax passes through the pint (1, –2), then the tangent at this point is

Q4

The equation of normal at the point  to the parabola y2 = 4ax, is

Q5

The equation of tangent at the point (1, 2) to the parabola y2 = 4ax, is

Q6

If a tangent of y2 = ax made angle of 450 with the x-axis, then its point of contact will be

Q7

If a normal drawn to the parabola y2 = 4ax at the point (a, 2a) meets parabola again on (at2, 2at), then the value of t will be

Q8

If the straight line x + y = 1 touches the parabola y2 – y + x = 0, then the coordinates of the point of contact are

Q9

The angle of intersection between the curves y2 = 4x and x2 = 32y at point (16, 8) is

Q10

Two tangent are drawn from the point (–2, –1) to the parabola y2 = 4x. if  is the angle between them, then