﻿  The lengths of the perpendicular from the points (m2, 2m), (mm’, m +m’) and (m’2, 2m’) to the line x + y + 1 = 0 form : Kaysons Education

# The Lengths Of The Perpendicular From The Points (m2, 2m), (mm’, m +m’) And (m’2, 2m’) To The Line x + y + 1 = 0 Form

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

A G.P.

#### SIMILAR QUESTIONS

Q1

The straight line is x + y = 0, 3x + y – 4 = 0 and x + 3y – 4 = 0 from a triangle which is

Q2

If the line x + 2ay + a = 0, x + 3by + b = 0 and x + 4cy + c = 0 are concurrent, then abc are in

Q3

If the line 2 (sin a + sin bx – 2 sin (a – by = 3 and 2 (cos a + cos bx + 2 cos (a – by = 5 are perpendicular, then sin 2a+ sin2b is equal to

Q4

If p1p2 denote the lengths of the perpendiculars from the origin on the lines x sec α + y cosec α = 2a and

x cos α + y sin α = a cos 2α respectively, then  is equal to

Q5

The locus of the point of intersection of the lines x sin θ + (1 – cos θ) y = a sin θ and x sin θ – (1 + cos θ) y + a sin θ = 0 is

Q6

The straight lines 4x – 3y – 5 = 0, x – 2y – 10 = 0, 7x + 4y – 40 = 0 and x + 3y + 10 = 0 form the sides of a

Q7

If two vertices of a triangle are (5, –1) and (–2, 3), and the orthocenter lies at the origin, the coordinate of the third vertex are

Q8

Equation of a line passing through the intersection of the lines

x + 2y – 10 = 0 and 2x + y + 5 = 0 is

Q9

The sine of the angle between the pair of lines represented by the equation x2 – 7xy + 12y2 = 0 is

Q10

The square of the differences of the slopes of the lines represented by the equation x2(sec2θ – sin2θ) – (2xy tan θ + y2 sin2θ = 0) is