﻿ Let f (x) = xn, n being non-negative integer. Then find the value of n for which the equality f’(a + b) = f ’(a) + f ’ (b) is valid for all, a, b > 0 : Kaysons Education

# Let f (x) = xn, n being Non-negative Integer. Then Find The Value Of n for Which The Equality f’(a + B) = f ’(a) + f ’ (b) Is Valid For All, a, b > 0

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

n = 0 and 2

Since f (x) = xnn being non-negative integer.

Then     f’ (x) = nxn – 1

Now the equality f’ (a + b) = f’ (a) + f’ (b) holds if,

%0

#### SIMILAR QUESTIONS

Q1

Let h(x) = min.{xx2} for every real number of x. Then:

Q2

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q3

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q4

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Q5

If f (x) is differentiable function and (f (x). g(x)) is differentiable at x = a, then

Q6

Determine the value of ‘a’ if possible, so that the function is continuous

Q7

for all real x and y. If f ’ (0) exists and equals to –1and f (0) = 1, find f ’(x).

Q8

Now if it is given that there exists a positive real δ, such that f (h) = h for 0 < h < δ then find f’(x) and hence f (x).

Q9

Let f  be an even function and f ’(0) exists, then find f’(0).

Q10