Question

 then the maximum value of (θ), is:

Solution

Correct option is

∴ (θ) is maximum and minimum as h(θ) is minimum and maximum respectively.  

   

For maximum and minimum put h’(θ) = 0.   

  

   

   

 

SIMILAR QUESTIONS

Q1

The function  has a local maximum at x =

Q2

Find the set of critical points of the function  

              

Q3

Let (x) = sin x – x on [0, π/2], find local maximum and local minimum.

Q4

  

Then find the value of ‘a’ for which (x) has local minimum at x = 2.

Q5

  

Discuss maxima and minima.

 

Q6

A cubic (x) vanishes at x = –2 and has relative maximum/minimum x = –1 and   Find the cubic (x). 

Q7

 

Find the maximum and minimum value of  

                      

Q8

Use the function (x) = x1/xx > 0 to determine the bigger of the two numbers.

Q9

 

The maximum value of 

Q10

The values of ‘K’ for which the point of minimum of the function f (x) = 1 + K2x – x3 satisfy the inequality  belongs to: