Question

 and .

Solution

Correct option is

 

Consider , multiply both side by ‘2’. We get: 

  

     

And similarly  

     

     

Now adding at (i), (ii) and (iii) to get : 

     

 

    

       

                                                                                                      

.

SIMILAR QUESTIONS

Q1

 

The general solution of the trigonometrical equation

     is given by

Q2

 

The general solution of equation   

       

Q3

The solution set of  in the interval 

Q4

If , then the values of  form a series in

Q5

 then the value of x other than zero, lying between  is

Q6

The maximum value of  in the interval  is attained when x =

Q7

 

The general solution of the equation  

         is given by

Q9
Q10