﻿ An oil company requires 12,000, 20,000 and 15,000 barrels of high-grade, medium grade and low grade oil, respectively. Refinery A produces 100, 300 and 200 barrels per day of high-grade, medium-grade and low-grade oil, respectively, while refinery B produces 200, 400 and 100 barrels per day of high-grade, medium-grade and low-grade oil, respectively. If refinery A costs Rs 400 per day and refinery B  costs Rs 300 per day to operate, how many days should each be run to minimize costs while satisfying requirements. : Kaysons Education

# An Oil Company Requires 12,000, 20,000 And 15,000 Barrels Of High-grade, Medium Grade And Low Grade Oil, Respectively. Refinery A produces 100, 300 And 200 Barrels Per Day Of High-grade, Medium-grade And Low-grade Oil, Respectively, While Refinery B produces 200, 400 And 100 Barrels Per Day Of High-grade, Medium-grade And Low-grade Oil, Respectively. If Refinery A costs Rs 400 Per Day And Refinery B  costs Rs 300 Per Day To Operate, How Many Days Should Each Be Run To Minimize Costs While Satisfying Requirements.

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

Machine A should run for 60 days & machine Bshould run for 30

The given data may be put in the following tabular form:

 Refinery High-grade   Medium-grade   Low-grade Cost per day A B 100                    300                     200 200                    400                     100 Rs 400 Rs 300 Minimum requirement 12,000            20,000                15,000

Suppose refineries A and B should run for x and y days respectively to minimize the total cost.

The mathematical form of the above LPP is

Minimize   Z = 400x + 300y

Subject to

100x + 200y ≥ 12000

300x + 400y ≥ 20,000

200x + 100y ≥ 15000

and,    xy ≥ 0

The feasible region of the above LPP is represented by the shaded region in fig.

The corner points of the feasible region are A2 (120, 0), P (60, 30) and B3(0, 150). The value of the objective function at these points are given in the following table:

 Point (x, y) Value of the objective function                Z = 400x + 300y A2 (120, 0) P (60, 30) B3 (0, 150) Z = 400 × 120 + 300 × 0 = 48000 Z = 400 × 60 + 300 × 30 = 33000 Z = 400 × 0 + 300 × 150 = 45000

Clearly, Z is minimum when x = 60, y = 30. The feasible region is unbounded. So, we find the half-plane represented by 400x + 300y < 33000. Clearly, the half-plane does not have points common with the feasible region. So, Z is minimum at x = 60, y = 30.

Hence, the machine A should run for 60 days and the machine B should run for 30 days to minimize the cost while satisfying the constraints.

#### SIMILAR QUESTIONS

Q1

Solve the following LPP graphically:

Minimize and Maximize Z = 5x + 2y

Subject to –2x – 3y ≤ – 6

x – 2y ≤ 2

3x + 2y ≤ 12

–3x + 2y ≤ 3

xy ≥ 0

Q2

Solve the following LPP graphically:

Maximize and Minimize   Z = 3x + 5y

Subject to   3x – 4y + 12 ≥ 0

2x – y + 2 ≥ 0

2x + 3y – 12 ≥ 0

0 ≤ x ≤ 4

y ≥ 2.

Q3

Solve the following linear programming problem graphically:

Maximize  Z = 50x + 15y

Subject to

5x + y ≤ 100

x + y ≤ 60

xy ≥ 0.

Q4

Solve the following LPP graphically:

Maximize   Z = 5x + 7y

Subject to

x + y ≤ 4

3x + 8y ≤ 24

10x + 7y ≤ 35

xy ≥ 0

Q5

Solve the following LPP graphically:

Minimize Z = 3x + 5y

Subject to

– 2x + y ≤ 4

x + y ≥ 3

x – 2y ≤ 2

xy ≥ 0

Q6

A house wife wishes to mix together two kinds of food, X and Y, in such a way that the mixture contains at least 10 units of vitamin A,12 units of vitamin B and 8 units of vitamin C.

The vitamin contents of one kg of food is given below:

 Vitamin A Vitamin B Vitamin C Food X: 1 2 3 Food Y: 2 2 1

One kg of food X costs Rs 6 and one kg of food Y costs Rs 10. Find the least cost of the mixture which will produce the diet.

Q7

A dietician wishes to mix two types of food in such a way that the vitamin contents of the mixture contain at least 8 units of vitamin A and 10 units of vitamin C. Food ‘I’ contains 2 units/kg of vitamin A and 1 unit/kg of vitamin C while food ‘II’ contains 1 unit/kg of vitamin A and 2 units/kg of vitamin C. It costs Rs 5.00 per kg to purchase food ‘I’ and Rs 7.00 per kg to produce food ‘II’. Determine the minimum cost to such a mixture. formulate the above as a LPP and solve it.

Q8

Every gram of wheat provides 0.1 gm of proteins and 0.25 gm of carbohydrates. The corresponding values of rice are 0.05 gm and 0.5 gm respectively. Wheat costs Rs. 4 per kg and rice Rs. 6. The minimum daily requirements of proteins and carbohydrates for an average child are 50 gms and 200 gms respectively. In what quantities should wheat and rice be mixed in the daily diet to provide minimum daily requirements of proteins and carbohydrates at minimum cost.

Q9

A manufacturer produces nuts and bolts for industrial machinery. It takes 1 hour or work on machine A and 3 hours on machine B to produce a package of nuts while it takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of Rs 2.50 per package of nuts and Re 1.00 per package of bolts. How many packages or each should he produce each day so as to maximize hit profit, if he operates his machines for at most 12 hours a day? Formulate this mathematically and then solve it.

Q10

A company produces soft drinks that has a contract which requires that a minimum of 80 units of the chemical A and 60 units of the chemical B to go into each bottle of the drink. The chemicals are available in a prepared mix from two different suppliers. Supplier S has a mix of 4 units of A and 2 units of B that costs Rs 10, the supplier T has a mix of 1 unit of A and 1 unit of B that costs Rs 4. How many mixes from S and T should the company purchase to honour contract requirement and yet minimize cost?