## Question

### Solution

Correct option is

1

For the equation to be defined, we have 2x + 1 ≥ 0 and 2x – 1 ≥ 0

⇒ 2x ≥ 1 ⇒ x ≥ 1/2. We rewrite the equation as Squaring both the equation as  Solving and get 1.

#### SIMILAR QUESTIONS

Q1

For real x, the expression [(x + m)2 – 4mn]/[2(x – n)] can be have any value except

Q2

If the expression y2 + 2xy + 2x + my – 3 can be resolved into two rational factors, then m must be

Q3

If one root of the equation x2 + px + 12 = 0 is 4, while the equation x2 +px + q = 0 has equal roots, the value of q is

Q4

If x2 + px + 1 is a factor of ax2 + bx + c, then

Q5

If 8, 2 are the roots of x2 + ax + β = 0 and 3, 3 are the roots of x2 + α xb = 0 then the roots of x2 + ax + b = 0 are

Q6

The number of real roots of Q7

The product of real of the equation is

Q8

Sum of the non – real roots of  Q9

If tan A and tan B are the roots of the quadratic equation x2 – px + q = 0, then value of sin2 (A + B) is

Q10

If lmn are real, l + m ≠ 0, then the roots of the equation

(l + m)x2 – 3(l – m)x – 2 (l + m) = 0 are