Question

If G is the centroid and I the incentre of the triangle with vertices A(–36, 7), B(20, 7) and C(0, –8), then GI is equal to

Solution

Correct option is

,

                   and

                

Therefore, the coordinate of I are

               

And the coordinate of GI are

               

SIMILAR QUESTIONS

Q1

Given the point A(0, 4) and B(0, –4), the equation of the locus of the pointp(x, y) such that |AP – BP| = 6 is

Q2

Coordinate (x, y) of a point P satisfy the relation 3x + 4= 9, y = mx + 1. The number of integral value of m for which the x-coordinate of p is also an integer is

Q3

The point A(2, 3), B(3, 5), C(7, 7) and D(4, 5) are such that 

Q4

Q, R and are the points on the line joining the points P(a, x) and T(b, y) such that PQ = QR = RS = ST.

Q5

The line joining A(bcos α, bsin α) and B(acos β, asin β) is produced to point M(x, y) so that AM : MB = b : a, then 

Q6

OPQR is square and M, N are the middle points of the sides PQ and QRrespectively then the ratio of the areas of the square and the triangle OMNis

Q7

If px1x2….xi,….and q y1y2,…y… are in A.P. with common difference a and b respectively, then locus of the center of mean position of the point Ai (xi, yi), = 1, 2 …n is

Q8

If α, β, γ are the real roots of the equation x3 – 3px3 + 3qx – 1 = 0, then the centroid of the triangle with vertices 

Q9

The number of points (p, q) such that p, q Ïµ {1, 2, 3, 4} and the equation px2 + qx + 1 = 0 has real roots is

Q10

Consider the point   then