﻿ If OA and OB are the tangents from the origin to the circle x2 + y2 + 2gx + 2fy + c = 0, and C is the centre of the circle, the area of the quadrilateral OACB is  : Kaysons Education

# If OA and OB are The Tangents From The Origin To The Circle x2 + y2 + 2gx + 2fy + c = 0, And C is The Centre Of The Circle, The Area Of The Quadrilateral OACB is

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

Since OA = OB and CA = CB, the diagonal OC divides the quadrilateralOACB in two equal right-angled triangles, OAC and OBC (Fig). therefore the area of the quadrilateral OACB is

#### SIMILAR QUESTIONS

Q1

Locus of the mid-points to the chords of the circle x2 + y2 = 4 which subtend a right angle at the centre is

Q2

A circle C touches the x-axis and the circle x2 + (y – 1)2 = 1externally, then locus of the centre of the circle is given by

Q3

Three circles with radii 3 cm, 4 cm and 5 cm touch each other externally. If A is the point of intersection of tangents to these circles at their points of contact, then the distance of A from the points of contact is

Q4

A line meets the coordinate axes in A and B. A circle is circumscribed about the triangle OAB. If m and n are the distances of the tangent to the circle at the origin from the points A and B respectively, the diameter of the circle is

Q5

If a circle passes through the point (ab) and cuts the circle x2 + y2 = k2 orthogonally, equation of the locus of its centre is

Q6

Equation of the circle which passes through the origin, has its centre on the line x + y = 4 and cuts the circle

x2 + y2 – 4x + 2y + 4 = 0 orthogonally, is

Q7

If O is the origin and OPOQ are distinct tangents to the circle x2 + y2 + 2gx + 2fy + c = 0, the circumcentre of the triangle OPQ is

Q8

The circle passing through the distinct points (1, t), (t, 1) and (tt) for all values of t, passes through the point

Q9

The angle between a pair of tangents drawn from a point P to the circle x2 + y2 + 4x – 6y + 9 sin2α + 13 cos2α = 0 is 2α. The equation of the locus of the point P is

Q10

Equation of a circle through the origin and belonging to the co-axial system, of which the limiting points are (1, 2), (4, 3) is