Question

The points on the parabola y2 = 12x whose focal distance is 4, are

Solution

Correct option is

y2 = 12x              … (1)

 a = 3, formulae for focal distance is a + x1

  a + x1 = 4    x1 = 1, y12 = 12   

So .

SIMILAR QUESTIONS

Q1

The focus of the parabola x2 – 2x – y + 2 = 0 is

Q2

If P1Q1 and P2Q2 are two focal chords of the parabola y2 = 4ax, then the chords P1P2 and Q1Q2 intersect on the

Q3

The condition that the line  be a normal to the parabola  

y2 = 4ax is

Q4

The equation of the normal to the hyperbola y2 = 4x, which passes through the point (3, 0), is

Q5

PQ is a double of the parabola y2 = 4ax. The locus of the points of trisection of PQ is

Q6

The locus of the point of intersection of the lines bxt – ayt = ab and bx + ay = abt is 

Q7

The line  will touch the parabola y2 = 4a(x + a), if

Q8

The equation of the parabola whose axis is vertical and passes through the points (0, 0), (3, 0) and (–1, 4), is

Q9

The points on the parabola y2 = 36x whose ordinate is three times the abscissa are

Q10

Axis of the parabola x2 – 4x – 3+ 10 = 0 is