Question

The focus of the parabola x2 – 2x – y + 2 = 0 is

Solution

Correct option is

x2 – 2x – y + 2 = 0     x2 – 2+ 1= y  1

 (x – 1)2 = y – 1

Put (x – 1) = Xy  1 = Y   X2 = 4aY where 4a = 1

Focus is = 0, Y = a    – 1 = 0,   

SIMILAR QUESTIONS

Q1

If a tangent of y2 = ax made angle of 450 with the x-axis, then its point of contact will be

Q2

If a normal drawn to the parabola y2 = 4ax at the point (a, 2a) meets parabola again on (at2, 2at), then the value of t will be

Q3

If the straight line x + y = 1 touches the parabola y2 – y + x = 0, then the coordinates of the point of contact are

Q4

The angle of intersection between the curves y2 = 4x and x2 = 32y at point (16, 8) is

Q5

The pole of the line lx + mx + n = 0 with respect to the parabola y2 = 4ax is

Q6

Two tangent are drawn from the point (–2, –1) to the parabola y2 = 4x. if  is the angle between them, then 

Q7

The conic represented by the equation  is

Q8

If (4, 0) is the vertex and y-axis, the directrix of a parabola then its focus is

Q9

The straight line y = mx + c touches the parabola y2 = 4a(x + a) if

Q10

If P1Q1 and P2Q2 are two focal chords of the parabola y2 = 4ax, then the chords P1P2 and Q1Q2 intersect on the