Question

The equation of the latus rectum of the parabola x2 + 4x + 2= 0 is 

Solution

Correct option is

2y = 3

x2 + 4x + 2= 0       (x + 2)2 = –2(– 2)  

Take x + 2 = X, y – 2 =    X2 = – 4aX

Equation of latus rectum is 

 2y = 3

SIMILAR QUESTIONS

Q1

The condition that the line  be a normal to the parabola  

y2 = 4ax is

Q2

The equation of the normal to the hyperbola y2 = 4x, which passes through the point (3, 0), is

Q3

PQ is a double of the parabola y2 = 4ax. The locus of the points of trisection of PQ is

Q4

The locus of the point of intersection of the lines bxt – ayt = ab and bx + ay = abt is 

Q5

The line  will touch the parabola y2 = 4a(x + a), if

Q6

The equation of the parabola whose axis is vertical and passes through the points (0, 0), (3, 0) and (–1, 4), is

Q7

The points on the parabola y2 = 36x whose ordinate is three times the abscissa are

Q8

The points on the parabola y2 = 12x whose focal distance is 4, are

Q9

Axis of the parabola x2 – 4x – 3+ 10 = 0 is  

Q10

x – 2 = t2y = 2t are the parameter equations of the parabola