Question

Sum of the last 30 coefficients in the expansion of (1 + x)59 when expanded in ascending powers of x is

Solution

Correct option is

258

There will be 60 terms in the expansion of (1 + x)59. Last thirty terms will be

         

SIMILAR QUESTIONS

Q1

If x is + ive, the first – ive term in the expansion of (1 + x)27/5 is:

Q2

Coefficients of x11 in the expansion of (2x2 + x – 3)6 is

Q3

Coefficients of x10 in the expansion of (1 + x2 – x3)8 is

Q4

The expression [x + (x3 - 1)1/2]5 + [x – (x3 – 1)1/2]5 is a polynomial of degree

Q5

The degree of the polynomial

              is equal to

Q6

 where {x} = Fractional part of x then the value of sec –1 (8θ) is

Q7

The remainder left out when 82n – (62)2n+1 is divided by 9 is

Q8
Q10

 then k is equal to: