Question

 then k is equal to:

Solution

Correct option is

Integrating both sides of the given relation,

             

Divide both sides by x = (1 + x) – 1

Above is sum of a G.P.

              

Integrating both sides with limits – 1 to 0,

                

              

SIMILAR QUESTIONS

Q1

Coefficients of x11 in the expansion of (2x2 + x – 3)6 is

Q2

Coefficients of x10 in the expansion of (1 + x2 – x3)8 is

Q3

The expression [x + (x3 - 1)1/2]5 + [x – (x3 – 1)1/2]5 is a polynomial of degree

Q4

The degree of the polynomial

              is equal to

Q5

 where {x} = Fractional part of x then the value of sec –1 (8θ) is

Q6

The remainder left out when 82n – (62)2n+1 is divided by 9 is

Q7
Q9

Sum of the last 30 coefficients in the expansion of (1 + x)59 when expanded in ascending powers of x is

Q10

 is maximum when m is