## Question

### Solution

Correct option is

(x (3,4) log1/2 (x2 – 7x + 13) > 0

⇒             (x2 – 7x + 13) < 1                … (i)

And           x2 – 7x + 13 > 0                 … (ii)

Considering equation (ii), x2 – 7x + 13 > 0, we have   Which is true for all R again taking (i) x2 – 7x + 13 < 1

⇒        x2 – 7x + 12 < 0

⇒       (x – 3) (x – 4) < 0

⇒        3 < x < 4                           … (b)

Combining (a) and (b), we have

Hence, domain of (x (3, 4)   or   ]3, 4[.

#### SIMILAR QUESTIONS

Q1

The polynomial p(x) is such that for any polynomial q(x) we have p(q(x) = q(p(x). Then p(x) is

Q2

If denotes greatest integer function, then

Q3 Infinite set, then period of the function cannot be

Q4

If a polynomial of degree n satisfies then (x) is

Q5 then

Q6

In the given figure find the domain, co-domain and range.

Q7

Find whether (x) = x3 forms a mapping or not?

Q8

Find whether forms a mapping or not?Find whether forms a mapping or not?

Q9

Find the domain of single valued function y = (x) given by the equation 10x + 10y = 10.

Q10

Find the domain of the function; 