Question

When a deuteron  of mass 2.0141 u and negligible kinetic energy is absorbed by a lithium  nucleus of mass 6.0155 u, the compound nucleus disintegrates spontaneously into two alpha particles, each of mass 4.0026 u. Calculate the energy in joule carried by each alpha particle.    

Solution

Correct option is

The equation of nuclear disintegration is

           

The liberated energy Q is given by 

        

            

            

            

  

  

            

            

This energy is equally shared by the two alpha particles. Hence energy carried by each alpha particle is .  

SIMILAR QUESTIONS

Q1

Calculate the binding energy of an -particle in MeV. The masses of proton, neutron and -particle are 1.00728, 1.00867 and 4.00151 urespectively.

Q2

Calculate the binding energy of a deuteron  in MeV.Given : mass of neutron = 1.008665 u, mass of hydrogen atom , mass of deuterium atoms 

Q3

Calculate the binding energy of a nitrogen nucleus in MeVGiven : mass of hydrogen atom = 1.00783 u, mass of

neutron = 1.00867 u and mass of nitrogen atom . Take 1 u = 931.5 MeV/c2.

Q4

Calculate the binding energy per nucleon of carbon  nucleus. Given : mass of carbon atom = 12.00000 u, mass of proton = 1.00867 u, mass of electron = 1.00055 u. The energy equivalent of 1 u is 931.5 MeV.  

Q5

Calculate the binding energy per nucleon of the nuclei of Given :mass of hydrogen atom = 1.007825 u, mass of neutron = 1.008665 u, mass of  atom = 55.934939 u, mass of  atom = 208.980388u and . Which nucleus is more stable?

Q6

The binding energy energies of deuteron  and -particle  are 1.112 and 7.07 MeV/nucleon respectively. Find out in the process , state whether energy is supplied or liberated and how much? 

Q7

A heavy nucleus X of mass number A = 240 and binding energy per nucleon = 7.6 MeV is split into two nearly equal fragments Y and Z of mass numbers A1 = 110 and A2 = 130. The binding energy of each one of these nuclei is 8.5 MeV per nucleon. Calculate the total binding energy of each of the nuclei XY and Z, and hence the energy Q released per fission in MeV.   

 

Q8

The neutron separation energy is defined to be the energy required to remove a neutron from a nucleus. Obtain the neutron separation energy of the nucleus of Given : mass of  atom = 40.962278 u, mass of  atom = 39.962591 u, mass of neutron = 1.008665 u and .   

Q9

The nucleus  decays by -emission. Write down the decay equation and determine the maximum kinetic energy of the emitted electron. The atomic masses of  are 22.994466 u and 22.989770 u respectively.

Q10

If the half lives of a radioactive element for α and β decay are 4 yrs and 12 yrs respectively, the ratio of their activities after six yrs will be