## Question

### Solution

Correct option is

G.P. be a point on the circle x2 + y2 = a2.

Thus equation of chord x2 + y2 = a2 of contact of tangent drawn from to the circle x2 + y2 = b2 is

T = 0  This touches the circle x2 + y2 = e2

So length of parallel from (0, 0) is equal to the radius  #### SIMILAR QUESTIONS

Q1

Find the coordinates of the middle point of the chord which the circle x2y2 + 4x – 2y – 3 = 0 cut off the line x – y + 2 = 0.

Q2

For what values of λ will the line y = 2x + λ be a tangent to the circle x2y2 = 5.

Q3

Find the equation of tangent to the circle x2 + y2 – 2ax = 0 at the point Q4

Find the equation of normal to the x2 + y2 = 2x which is parallel to x + 2y= 3.

Q5

Find the equation of normal at the point (5, 6) to the circle;

x2 + y2 – 5x + 2y – 48 = 0

Q6

Find the equation of tangent to the circle x2 + y2 = 16 drawn from the point (1, 4).

Q7

The angle between a pair of tangents from a point P to the circle

x2 + y2 + 4x – 6y + 9 sin2α + 13 cos2α = 0 is 2α.

Find the equation of the lows of the point P.

Q8

Find the length of tangents drawn from the point (3, – 4) to the circle

2x2 + 2y2 – 7x – 9y – 30 = 0

Q9

Find the condition that chord of contact of any external point (hk) to the circle x2 + y2 = a2 should subtend right angle at the centre of the circle.

Q10

Find the middle point of the chord intercepted on line lx + my + n = 0 by the circle x2 + y2 = a2.