Question

If sec A tan B + tan A sec B = 91, then the value of (sec A sec B + tan A tan B)2 is equal to

Solution

Correct option is

8282

(sec A sec B + tan A tan B)2 – (sec A tan B + tan A sec B)2

           

           

           

           

(sec A + sec B + tan A + tan B)2 = (91)2 + 1 = 8282.

SIMILAR QUESTIONS

Q2

The maximum value of (cos α1) (cos α2) …(cos αn) under the restriction 0 ≤ α1, α1,…., α1 ≤ π/2 and (cos α1) (cos α2) …

(cos αn) = 1 is

Q3

The number of integral values of k for which the equation 7 cos x + 5 sin x = 2k + 1 has a solution is

 

Q4

 

                                                              

Q5

  

    

are two matrices such that AB is the null matrix, then

Q6

 is independent of θ, then

Q8

The equation sin4 x + cos4 x = a has a real solution for

Q9

If sin θ (1 + sin θ) + cos θ (1 + cos θ) = x and sin θ (1 – sin θ) + cos θ (1 – cos θ) = y then

Q10

The values of θ lying between 0 and π/2 and satisfying the equation