Suppose X ~ B(n, p) And P(X = 5). If p > 1/2, Then

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

Suppose X B(np) and P(X = 5). If p > 1/2, then

Solution

Correct option is

n ≤ 7

⇒ n ≤ 7

Testing

SIMILAR QUESTIONS

Q1

A letter is known to have come from either TATANAGAR or CALCUTTA. On the envelope, just two consecutive letters, TA, are visible. The probability that the letter has come from CACUTTA is

Q2

A group of 6 boys and 6 girls is randomly divided into two equal groups. The probability that each group contains 3 boys and 3 girls is

Q3

In a hurdle race, a runner has probability p of jumping over a specific hurdle. Given that in 5 trials, the runner succeeded 3 times, the conditional probability that the runner had succeeded in the first trial is

Q4

Three integers are chosen at random without replacement from the first 20 integers. The probability that their product is even 2/19.

Q5

A box contains tickets numbered 1 to Nn tickets are drawn from the box with replacement. The probability that the largest number on the tickets is is

Q6

A box contain N coins, m of which are fair and rest are biased. The probability of getting a head when a fair coin is tossed is 1/2, when a baised coin is tossed. A coin is drawn from the box at random and is tossed twice. The first time it shows head and the second time it shows tail. The probability that the coin drawn is fair is

Q7

Given that AB and C are events such that P(A) = P(B) = P(C) = 1/5, P(A B) = P(B ∩ C) = 0 and P(A ∩ C) = 1=10. The probability that at least one of the events AB or C occurs is …….

Q8

 

Let A and B be two events such that

Q9

A and B toss a coin alternatively till one of them gets a head and wins the game. If A begins the game, the probability B wins the game is

Q10

A person is known to speak the truth 4 time out of 5. He throws a dia and reports that it is a ace. The probability that it is actually a ace is