## Question

### Solution

Correct option is

For  extrema, f’(x) = 0

So their arises two cases as:

Case I: At a = 3, if function attains minimum and is positive.

Case II: at a = –2, if function attains minimum and is positive.

#### SIMILAR QUESTIONS

Q1

Let (x) = sin x – x on [0, π/2], find local maximum and local minimum.

Q2

Then find the value of ‘a’ for which (x) has local minimum at x = 2.

Q3

Discuss maxima and minima.

Q4

A cubic (x) vanishes at x = –2 and has relative maximum/minimum x = –1 and   Find the cubic (x).

Q5

Find the maximum and minimum value of

Q6

Use the function (x) = x1/xx > 0 to determine the bigger of the two numbers.

Q7

The maximum value of

Q8

then the maximum value of (θ), is:

Q9

The values of ‘K’ for which the point of minimum of the function f (x) = 1 + K2x – x3 satisfy the inequality  belongs to:

Q10

be the differential equation of a curve and let P be the point of maxima then number of tangents which can be drawn from P to x2 – y2a2 is/are: