Let AB be a chord of the circle x2 + y2 = a2 subtending a right angle at the centre. Then the locus of the centroid of the triangle PAB as Pmoves on the circle is


Correct option is

A circle

Let AB be any chord subtending an angle of 90o at centre O

(0, 0), then                             


If P be any point on the circle, then P is (a cos θ, a sin θ) 

If (hk) be the centroid, then   


Eliminate θ 






3:- If O is the origin and P is the centre of C, then the difference of the squares of the lengths of the tangents from A and B to the circle is equal to


If the two (x – 1)2 + (y – 3)2 = r2 and x2 + y2 – 8x + 2y + 8 = 0 intersect in two distinct points, then


The distance between the chords of contact of the tangent to the circle x2 + y2 + 2gx + 2fy + c = 0 from the origin and the point (gf) is


The angle between the tangents drawn from the origin to the circle (x – 7)2 + (y + 1)2 = 25 is


A square is inscribed in the circle x2 + y2 – 2x + 4y + 3 = 0. Its sides are parallel to the co-ordinates axes. Then one vertex of the square is


If the lines 3x – 4y – 7 = 0 and 2x – 3y – 5 = 0 are two diameters of a circle of area 49π square units, then the equation of the circle is:


A variable circle passes through a fixed point A(pq) and touches the x-axis. The locus of the other end of the diameter through A is:


A circle touches the x-axis and also touches the circle with centre (0, 3) and radius 2. The locus of the centre of the circle is:


The triangle PQR is inscribed in the circle x2 + y2 = 25. If Q and R have co-ordinates (3, 4) and (–4, 3) respectively than QPR is equal  to


The lines joining the origin to the points of intersection of the line 4x + 3y = 24 with the circle (x – 3)2 + (y – 4)2 = 25 are