﻿ Let AB be a chord of the circle x2 + y2 = a2 subtending a right angle at the centre. Then the locus of the centroid of the triangle PAB as Pmoves on the circle is : Kaysons Education

# Let AB be A Chord Of The Circle x2 + y2 = a2 subtending A Right Angle At The Centre. Then The Locus Of The Centroid Of The Triangle PAB as Pmoves On The Circle Is

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

A circle

Let AB be any chord subtending an angle of 90o at centre O

(0, 0), then

If P be any point on the circle, then P is (a cos θ, a sin θ)

If (hk) be the centroid, then

Eliminate θ

#### SIMILAR QUESTIONS

Q1

3:- If O is the origin and P is the centre of C, then the difference of the squares of the lengths of the tangents from A and B to the circle is equal to

Q2

If the two (x – 1)2 + (y – 3)2 = r2 and x2 + y2 – 8x + 2y + 8 = 0 intersect in two distinct points, then

Q3

The distance between the chords of contact of the tangent to the circle x2 + y2 + 2gx + 2fy + c = 0 from the origin and the point (gf) is

Q4

The angle between the tangents drawn from the origin to the circle (x – 7)2 + (y + 1)2 = 25 is

Q5

A square is inscribed in the circle x2 + y2 – 2x + 4y + 3 = 0. Its sides are parallel to the co-ordinates axes. Then one vertex of the square is

Q6

If the lines 3x – 4y – 7 = 0 and 2x – 3y – 5 = 0 are two diameters of a circle of area 49π square units, then the equation of the circle is:

Q7

A variable circle passes through a fixed point A(pq) and touches the x-axis. The locus of the other end of the diameter through A is:

Q8

A circle touches the x-axis and also touches the circle with centre (0, 3) and radius 2. The locus of the centre of the circle is:

Q9

The triangle PQR is inscribed in the circle x2 + y2 = 25. If Q and R have co-ordinates (3, 4) and (–4, 3) respectively than QPR is equal  to

Q10

The lines joining the origin to the points of intersection of the line 4x + 3y = 24 with the circle (x – 3)2 + (y – 4)2 = 25 are